A Validation Methodology in Hierarchical Clustering

نویسندگان

  • Fernanda Sousa
  • Jorge Tendeiro
  • Roberto Frias
چکیده

This paper presents a validation methodology in ascending hierarchical clustering. The objects in validation are clustering hierarchies, and simulation is used. Under certain conditions, this methodology allows us to evaluate the quality of hierarchical structures, its robustness and fiability, according to the data structure. The effect of the application of a given criterion on some kind of structures is also analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Requirements Engineering Model in Designing Complex Systems

This research tends to development of the requirements elicitation methodology with regard to operational nature and hierarchical analysis for complex systems and also, regarding available technologies. This methodology applies Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) to ensure traceability of planned qualitative and quantitative data from requirements to available te...

متن کامل

Requirements Engineering Model in Designing Complex Systems

This research tends to development of the requirements elicitation methodology with regard to operational nature and hierarchical analysis for complex systems and also, regarding available technologies. This methodology applies Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) to ensure traceability of planned qualitative and quantitative data from requirements to available te...

متن کامل

Hierarchical Group Compromise Ranking Methodology Based on Euclidean–Hausdorff Distance Measure Under Uncertainty: An Application to Facility Location Selection Problem

Proposing a hierarchical group compromise method can be regarded as a one of major multi-attributes decision-making tool that can be introduced to rank the possible alternatives among conflict criteria. Decision makers’ (DMs’) judgments are considered as imprecise or fuzzy in complex and hesitant situations. In the group decision making, an aggregation of DMs’ judgments and fuzzy group compromi...

متن کامل

Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments

Diagnostic feature extraction with consideration of interactions between variables is very important, but has been neglected in most diagnostic research. In this paper, a new feature extraction methodology is developed to consider variable interactions by using a fractional factorial design of experiments (DOE). In this methodology, features are extracted by using principal component analysis (...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005