A Validation Methodology in Hierarchical Clustering
نویسندگان
چکیده
This paper presents a validation methodology in ascending hierarchical clustering. The objects in validation are clustering hierarchies, and simulation is used. Under certain conditions, this methodology allows us to evaluate the quality of hierarchical structures, its robustness and fiability, according to the data structure. The effect of the application of a given criterion on some kind of structures is also analyzed.
منابع مشابه
Requirements Engineering Model in Designing Complex Systems
This research tends to development of the requirements elicitation methodology with regard to operational nature and hierarchical analysis for complex systems and also, regarding available technologies. This methodology applies Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) to ensure traceability of planned qualitative and quantitative data from requirements to available te...
متن کاملRequirements Engineering Model in Designing Complex Systems
This research tends to development of the requirements elicitation methodology with regard to operational nature and hierarchical analysis for complex systems and also, regarding available technologies. This methodology applies Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) to ensure traceability of planned qualitative and quantitative data from requirements to available te...
متن کاملHierarchical Group Compromise Ranking Methodology Based on Euclidean–Hausdorff Distance Measure Under Uncertainty: An Application to Facility Location Selection Problem
Proposing a hierarchical group compromise method can be regarded as a one of major multi-attributes decision-making tool that can be introduced to rank the possible alternatives among conflict criteria. Decision makers’ (DMs’) judgments are considered as imprecise or fuzzy in complex and hesitant situations. In the group decision making, an aggregation of DMs’ judgments and fuzzy group compromi...
متن کاملDiagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments
Diagnostic feature extraction with consideration of interactions between variables is very important, but has been neglected in most diagnostic research. In this paper, a new feature extraction methodology is developed to consider variable interactions by using a fractional factorial design of experiments (DOE). In this methodology, features are extracted by using principal component analysis (...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کامل